Retinal vascular rescue of oxygen-induced retinopathy in mice by norrin.
نویسندگان
چکیده
PURPOSE Wnt-signaling has been implicated in retinal development. The aim of this study was to investigate the possibility of improving retinal vasculature in an animal model of retinopathy by activating Wnt-signaling. METHODS C57BL/6J mice were evaluated using a model of oxygen-induced retinopathy (OIR). Test animals were divided in three groups and treated at postnatal day (P) 14 with intravitreal injections of Wnt-signaling modulators (respectively, norrin, Dickkopf-related protein 1 [DKK1], and norrin + DKK1) in one eye. A fourth group of animals were treated with injection of PBS in one eye as well and used as a control group. Areas of avascular retina and neovascular tufts in injected (treated) eyes and noninjected fellow eyes were determined in each of the four groups at P17 (3 days after intravitreal injection) and the difference related to these characteristics was obtained among them. To evaluate the effect of norrin on progression of retinopathy, a fifth litter (eight animals) was also treated with norrin and these retinas were evaluated at different time points. RESULTS Modulation of Wnt-signaling consistently shows a statistically significant decrease in the avascular area of the retinas. Treatment with norrin (Wnt-signaling activator) or DKK1 (canonical signaling inhibitor) results in a statistically significant reduction of retinal avascular area compared with control eyes. Neovascular tufts were also reduced in treated eyes, albeit to a lesser extent. CONCLUSIONS Modulation of Wnt-signaling improves retinal vascularization and accelerates vascular recovery after induction of retinopathy in the OIR mouse. Activation of Wnt-signaling (norrin) and inhibition of Wnt-canonical signaling (DKK1) result in similar improvement, indicating that norrin promotes improved vascularization, at least in part, by way of noncanonical Wnt-signaling.
منابع مشابه
Neurobiology of Disease Norrin Promotes Vascular Regrowth after Oxygen-Induced Retinal Vessel Loss and Suppresses Retinopathy in Mice
Norrin is a secreted protein that is involved in retinal angiogenesis and activates the Wnt-signaling pathway. We studied the role of Norrin in microvascular endothelial cells in vitro, and in a mouse model of retinopathy characterized by oxygen-induced vascular loss followed by hypoxia-induced pathological neovascularization. Recombinant Norrin significantly increased proliferation, viability,...
متن کاملNorrin promotes vascular regrowth after oxygen-induced retinal vessel loss and suppresses retinopathy in mice.
Norrin is a secreted protein that is involved in retinal angiogenesis and activates the Wnt-signaling pathway. We studied the role of Norrin in microvascular endothelial cells in vitro, and in a mouse model of retinopathy characterized by oxygen-induced vascular loss followed by hypoxia-induced pathological neovascularization. Recombinant Norrin significantly increased proliferation, viability,...
متن کاملFzd4 Haploinsufficiency Delays Retinal Revascularization in the Mouse Model of Oxygen Induced Retinopathy
Mutations in genes that code for components of the Norrin-FZD4 ligand-receptor complex cause the inherited childhood blinding disorder familial exudative vitreoretinopathy (FEVR). Statistical evidence from studies of patients at risk for the acquired disease retinopathy of prematurity (ROP) suggest that rare polymorphisms in these same genes increase the risk of developing severe ROP, implying ...
متن کاملNorrin: molecular and functional properties of an angiogenic and neuroprotective growth factor.
Norrin is a secreted signaling molecule with structural and functional characteristics of an autocrine and/or paracrine acting growth factor. In the eye, Norrin is constitutively expressed in Müller cells. Norrin specifically binds to Frizzled-4 receptors and activates the canonical Wnt/β-catenin signaling pathway that is profoundly enhanced when Tspan12 is present at the Norrin/Frizzled-4 rece...
متن کاملThe Norrin/Frizzled4 signaling pathway in retinal vascular development and disease.
Disorders of retinal vascular growth and function are responsible for vision loss in a variety of diseases, including diabetic retinopathy, age-related macular degeneration, retinopathy of prematurity and retinal artery or vein occlusion. Over the past decade, a new signaling pathway that controls retinal vascular development has emerged from the study of inherited disorders - in both humans an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 54 1 شماره
صفحات -
تاریخ انتشار 2013